

Feb 19-8:47 AM

Γ

Given
$$P(A) = .4$$
, $P(B) = .3$, $P(A \text{ or } B) = .8$
 $P(\overline{A}) = 1 - P(A) = .6$ $2P(\overline{B}) = 1 - P(B) = .1$
 $P(\overline{A} \text{ or } B) = 1 - P(A \text{ or } B) = 1 - .8 = .2$
 $P(A \text{ or } B) = 1 - .8 = .2$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 $P(A \text{ or } B) = P(A) + .3 - P(A \text{ and } B)$
 $P(A \text{ or } B) = .4 + .3 - P(A \text{ and } B)$
 $P(A \text{ and } B) = .1 = .7$
 $Since$
 $O \le P(E) \le 1$
Impossible

٦

Given
$$P(A)=.4$$
, $P(B)=.3$, $P(A \text{ or } B)=.5$
a) $P(\overline{A})=.6$
a) $P(\overline{B})=.1$
b) $P(\overline{A} \text{ or } B)=1-.5=.5$
c) $P(A \text{ and } B)$
 $P(A \text{ or } B)=P(A)+P(B)-P(A \text{ and } B)$
 $.5=.4+.3-P(A \text{ and } B)$
 $.5=.4+.3-P(A \text{ and } B)$
 $.5-.4-.3=-P(A \text{ and } B)$
 $.5-.4-.3=$

Jan 16-4:33 PM

I Shipped a Coin 300 times, it landed
tails 120 times.
1) P(Ship this coin and lands tails)
=
$$\frac{120}{300} = \frac{12}{50} = \begin{bmatrix} 2\\5\\5\end{bmatrix}$$

2) Sind odds in Savor of landing tails.
tails : # tails
120 : 180 - 12:3]
3) Sind odds against landing tails.
3:2]

Given odds in Savor of event E to be

$$3 \cdot 32$$

1) odds against. = $32 \cdot 3$
2) $P(E) = \frac{3}{3+32} = \frac{3}{35}$
3) $P(E) = \frac{32}{3+32} = \frac{32}{35}$

Jan 16-4:54 PM

Suppose
$$P(E) = 2.5\%$$

1) Sind $P(E)$ in reduced fraction.
 $2.5\% = \frac{2.5}{100} = \frac{1}{40}$ month
 $2.5\% = \frac{2.5}{100} = \frac{1}{40}$ month
 $2.5\% = 2.5(.01) = 1.025$
3) Sind $P(E)$ in decimal.
 $P(E) = 1 - P(E) = 1 - .025 = .975$
4) Sind odds in favor of event E.
 $P(E) = P(E) = 1 = .025 = .975$
5) find odds against E.
 $39 = .1$
SGE 12
Pages 1 22

Multiplication Rule Keyword AND Multiple Action Event P(A and B) A happens, then B happens. Independent Events one outcome does not change the prob. of next outcome. Two Newborn Labies First one Next one P(Boy)=.5 P(Boy)=.5 Draw two Cards with replacement $P(\text{Sirst Card is Ace}) = \frac{4}{50}$ P(Second Card is Ace)= 4.52

Jan 16-5:04 PM

If A and B are independent events, then $P(A \text{ and } B) = P(A) \cdot P(B)$ You flip a fair coin twice, T T T H Sample Space $P(T T) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ H T Complete list of $P(HT) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ all possible outcomes. $P(HH) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

You take a quiz with two questions. It is Multiple choice. Each question has 3 choices but only one Correct choice. You are Making Random Guesses, $\begin{array}{c} C \rightarrow Correct \\ \overline{C} \rightarrow Incorrect \\ P(C) = \frac{1}{3}, \frac{1}{3} = \frac{1}{9} \\ \hline C & P(CC) = \frac{1}{3}, \frac{1}{3} = \frac{1}{9} \\ \hline C & P(CC) = \frac{1}{3}, \frac{2}{3} = \frac{2}{9} \\ \hline C & P(CC) = \frac{1}{3}, \frac{2}{3} = \frac{2}{9} \\ \hline C & P(CC) = \frac{1}{3}, \frac{2}{3} = \frac{2}{9} \\ \hline C & P(CC) = \frac{2}{3}, \frac{1}{3} = \frac{2}{9} \\ \hline P(C) = \frac{1}{3}, \frac{2}{3} = \frac{2}{9} \\ \hline P(C)$

Jan 16-5:16 PM

Draw 2 Cards with replacement from
a standard deck of playing Cards.
P(Both Face Cards)=P(FF)

$$=\frac{12}{52} \cdot \frac{12}{52} = \frac{9}{169}$$

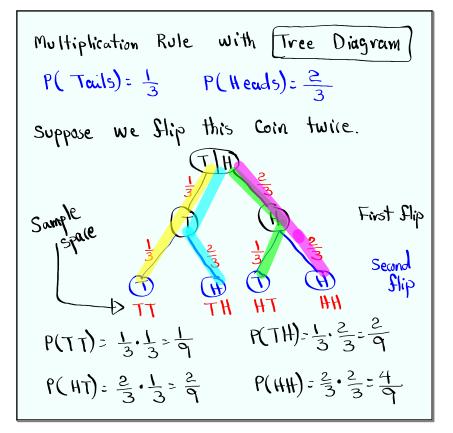
P(NO Face Cards) = P(FF)
 $=\frac{40}{52} \cdot \frac{40}{52} = \frac{100}{169}$
IS you draw 3 Cards,
P(All aces) = $\frac{4}{52} \cdot \frac{4}{52} \cdot \frac{4}{52} = \frac{1}{2197}$
 $=4.55 \times 10^{4}$
 $= .000455$
Reare event
what are the odds in Savor of getting all
Aces? P(All Aces) $\circ P(All Aces)$
 $=\frac{1}{2197} \circ \frac{2196}{2197}$
 $=1 \cdot 2196$
 $=1 \cdot 2196$
 $=1 \cdot 2196$
 $=1 \cdot 2196$
 $=1 \cdot 2196$

$$P(A) = .4 \qquad P(B) = .5 \qquad A \notin B \quad are independent \quad Evolutions$$

$$I)P(A \quad and \quad B) = P(A) \cdot P(B) = (.4)(.5) = .2$$

$$P(A \quad or \quad B) = P(A) + P(B) - P(A \quad and B) = .4 + .5 - .2 = .1$$

$$P(A \quad or \quad Diogvam)$$

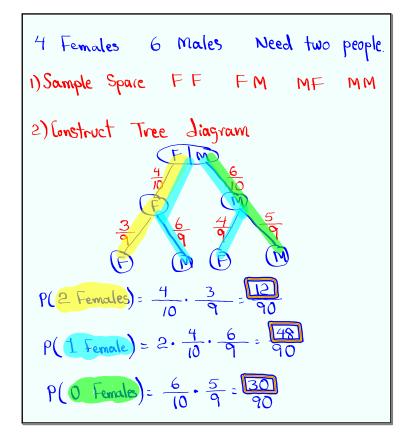

$$P(A \quad or \quad Diogvam)$$

$$P(A \quad or \quad B) = P(A \quad or \quad B) = .3$$

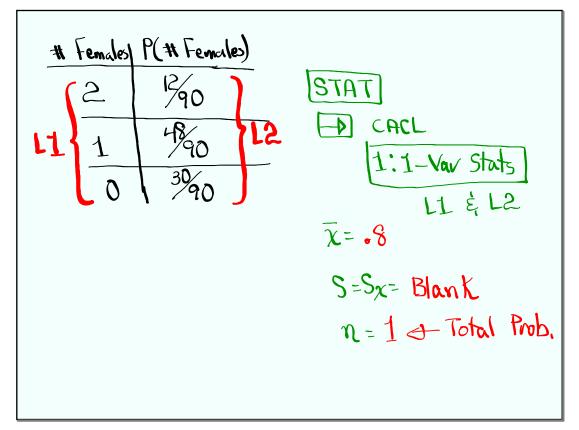
$$P(A \quad or \quad B) = P(A \quad or \quad B) = .3$$

$$P(A \quad or \quad B) = P(A \quad or \quad B) = .3$$

Jan 16-5:35 PM


A deck of playing Cards has 40 Cards with 3 aces. Draw 2 Cards with replacement. AIA A-DAce A -> Ace $P(Both are a(es) = P(AA) = \frac{3}{40} \cdot \frac{3}{40} = \frac{9}{1600}$ $P(\text{exactly one Are}) = 2 \cdot \frac{3}{40} \cdot \frac{37}{40} = \frac{111}{800}$ $P(No \ a(es) = P(\overline{A} \ \overline{A}) = \frac{37}{40} \cdot \frac{37}{40}$ 1369 1600

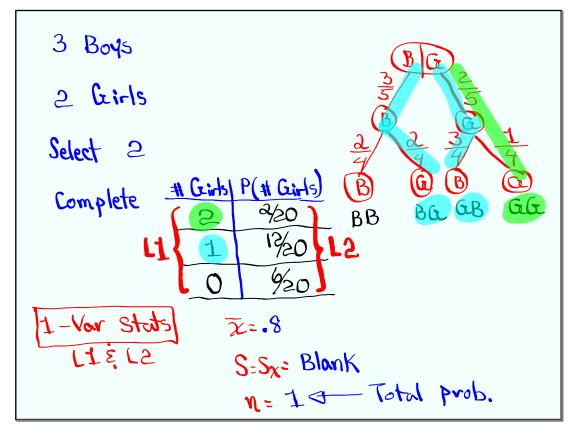
Jan 16-6:07 PM

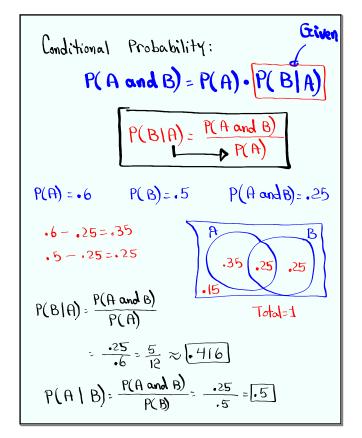

Draw 2 Cards without replacement
Srom a Sull deck of playing Cards.

$$P(2 A ces) = \frac{4}{52} \cdot \frac{3}{51} = \frac{1}{821}$$

First Card Second Card
is Are is Are
IS You draw 3 Cards,
 $P(A ll A ces) = \frac{4}{52} \cdot \frac{3}{51} \cdot \frac{2}{50}$
 $= \frac{1}{5525}$

Jan 16-6:18 PM


Jan 16-6:25 PM


Jan 16-6:33 PM

Г

A piggy bank has 3 quarters and 12 nickels.
Reindomly take 2 Coins with No
Teplacement.
Sample Space NN NQ QN QQ
10¢ 30¢ 50¢
P(Total = 10¢) =
$$\frac{12}{15} \cdot \frac{11}{14} = \frac{22}{35}$$

P(Total = 30¢) = $2 \cdot \frac{12}{15} \cdot \frac{3}{14} = \frac{12}{35}$
P(Total = $50¢$) = $\frac{3}{15} \cdot \frac{2}{14} = \frac{1}{35}$
Total ¢ P(Total ¢)
 $10¢ \frac{29}{35}$
L1 ¢ L2
 $\overline{x} = 18$
 $50¢$ $\frac{1}{35}$
 $R = 1 \leftarrow Total Prob.$

Jan 16-6:49 PM

Jan 16-6:57 PM

$$P(HB) = .6$$

$$P(FF) = .3$$

$$P(HB \text{ and } FF) = .25$$

$$F(HB \text{ and } FF) = .25$$

$$F(FF \mid HB) = \frac{.25}{.6} = \frac{5}{12} = \frac{.416}{.416}$$

$$P(HB \mid FF) = \frac{.25}{.3} = \frac{5}{.6} \approx \frac{.833}{.833}$$

Jan 16-7:04 PM